

DATASHEET

DESCRIPTION:

PeakOptical®'s CWDM Transceiver products provide optical networking equipment manufacturers with a timely and cost effective tool in supporting the unceasing demand for higher bandwidth equipment build-outs in the enterprise access and metropolitan area networks. There are 16 center wavelengths available from 1270nm to 1610nm. The 20nm channel spacing allows for un-cooled laser operation, a high yield manufacturing process, and lower cost Mux/Demux technology, thus providing a complete cost effective solution for various data and telecom applications.

FEATURES:

- 18 CWDM Wavelengths Available
- Build-in Isolator Optional
- 32dB Extended link budget with APD receiver
- Duplex LC connector
- Verv low iitter
- Metal enclosure for lower EMI
- Single 3.3V power supply
- Low power dissipation <700mW typical
- Designed to Meet Laser Class1 Compliant with IEC60825-1
- Built-in digital diagnostic functions with Real Time Monitoring of:
 - Transmitter Output Power
 - Receiver Input Power
 - Laser Bias Current
 - Temperature
 - Supply Voltage
- RoHS Compliant Products

APPLICATIONS:

- Metro/Access Networks
- Gigabit Ethernet
- 1×Fiber Channel
- Other Optical Link

SPECIFICATIONS:

Regulatory Compliance:

Test	Condition	Reference Standard
Electrostatic Discharge (ESD)to the Electrical Pins	Class 1 (>2000 V) -Human Body Model	MIL-STD-883C Method 3015.4
Electrostatic Discharge (ESD)Immunity	Class 2(>4.0kV) IEC61000-	IEC61000-4-2
Electrical interface(EMI)	Typically provide a 17 dB margin to the noted standard limits up to 6 GHz, when tested in a GTEM cell with the transceiver mounted to a circuit card with a chassis enclosure.	CISPR22 ITE Class B CENELEC EN55022 Class B (CISPR 22A) VCCI Class I
Immunity	Typically show no measurable effect from a 10 mV/m field swept from 80 to 1000MHz applied to the transceiver without a chassis enclosure.	IEC61000-4-3 Class 2
Mechanical Shock	B:1500g,0.5ms, 5times/axis	MIL-STD-883
Vibration	Conditions A:20g,20-2000Hz, 4minutes/ cycle,4cycles/axis	MIL-STD-883
Temperature Cycling	-40°&85°C	Bellcore GR-468-CORE
Damp Heat	85°Ç85%RH,1000hrs	Bellcore GR-468-CORE

Test	Condition	Reference Standard
Low Temp Storage	-40 °C2000hrs Bellcore	Bellcore GR-468-CORE
Accelerating Aging	60 °Ç 5.0V ≥5000hrs MIL-	MIL-STD-202F-108A
Laser Eye Safety and Equipment Type Testing	US FDA CDRH AEL Class 1 US 21 CFR, Subchapter J per Paragraphs 1002.10 and 1002.12 (IEC) EN60825-1: 1994 + A11+A2 (IEC) EN60825-2: 1994 + A1 (IEC) EN60950: 1992 + A1 + A2 + A3 + A4 + A11	CDRH certification TUV certification

Electrical and Optical Characteristics: (Condition: Ta=TOP)

Parameter	Symbol	Min.	Typical	Max.	Unit
Transmitter Differential Input Volt	+/-TX_DAT	200		2400	mV p-p
Supply Current	I_{CC}		200	300	mA
Tx_Disable Input Voltage - Low	V_{IL}	0		0.8	V
Tx_Disable Input Voltage - High	V_{IH}	2.0		Vcc	V
Tx_Fault Output Voltage - Low	V_{OL}	0		0.8	٧
Tx_Fault Output Voltage - High	V _{OH}	2.0		Vcc	V
Receiver Differential Output Volt	+/-RX_DAT	600		2000	mV p-p
Rx_LOS Output Voltage- Low	V_{OL}	0		0.8	V
Rx_LOS Output Voltage- High	V _{OH}	2.0		Vcc	V

Transmitter:

Parameter	Symbol	Min.	Typical	Max.	Unit
Data Rate	В	-	1250	-	Mb/s
Output Center Wavelength(0~70°C)	λς	λ-4	λ	λ+7.5	nm
Output Spectral Width(-20dB)	Δλ	-	-	1	nm
Average Output Power	Po	0	-	+5	dBm
Extinction Ratio	E.R.	9	-	-	dB
Data Input Voltage-High	V_{IHS}	V _{cc} -1.16	1	V _{cc} -0.89	V
Data Input Voltage -Low	V_{ILS}	V _{cc} -1.82	-	V _{cc} -1.48	V
Supply Current	I_{CC}	-	90	150	mA
Output Optical Eye	Compliant with IEEE802.3Z				

Receiver:

Parameter	Symbol	Min.	Typical	Max.	Unit
Receive Sensitivity	P _{min}	-	-	-32	dBm
Maximum Input Power	P _{MAX}	-7	-	-	dBm
RX_LOS Assert Level	LOS A	-43	-	-	dBm
RX_LOS Deassert Level	LOS D	-	-	-33	dBm
Hysteresis	-	-	2.0	-	dBm
Output High Voltage	V _{OH}	V _{cc} -1.03	-	V _{cc} -0.89	V
Output Low Voltage	V _{OLS}	V _{cc} -1.82	-	V _{cc} -1.63	V
Operating Wavelength	λς	1100	-	1600	nm
Supply Current	I_{CC}	-	80	110	mA

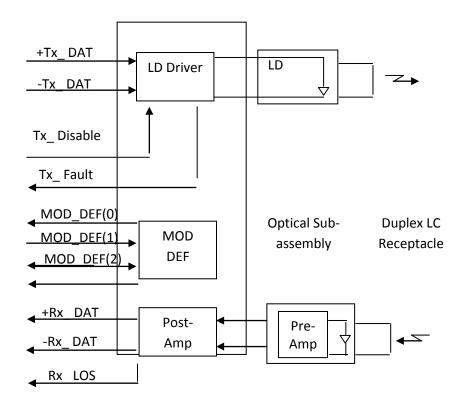
Absolute Maximum Ratings:

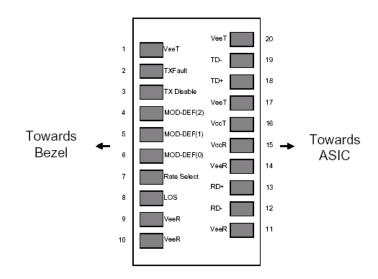
Parameter	Symbol Min.		Max.	Unit	
Storage Temperature	T _{ST}	-40	+85	°C	
Operating Temperature	T_{IP}	-10	+70	°C	
Input Voltage	Τ _{cc}	0	+5	V	

Recommended Operating Environment:

Parameter	Symbol	Min.	Typical	Max.	Unit
Supply Voltage	V_{CC}	+3.0	+3.3	+3.6	V
Operating Temperature	T _{OP}	0	-	+70	°C

Timing Characteristics:


Parameter	Symbol	Min.	Typical	Max.	Unit
TX_DISABLE Assert Time	t_off		3	10	usec
TX_DISABLE Negate Time	t_on		0.5	1	msec
Time to Initialize Include Reset of TX_FAULT	t_int		30	300	msec
TX_FAULT from Fault to Assertion	t_fault		20	100	usec
TX_DISBEL Time to Start Reset	t_reset	10			usec
Receiver Loss of Signal Assert Time (Off to On)	T _A ,RX_LOS			100	usec
Receiver Loss of Signal Assert Time (On to Off)	T _d ,RX_LOS			100	usec


Digital Diagnostic Monitor Characteristics:

Parameter	Min.	Unit	
Tx Output Power Accuracy	±3.0	dBm	
Rx Input Power Accuracy	±3.0	dBm	
Laser Bias Current Accuracy	±1 0	%	
Transceiver Internal Temperature Accuracy	±3.0	°C	
Transceiver Internal Supply Voltage Accuracy	±0.1	V	

Block Diagram of Transceiver:

Pin Assignment:

Pin out of Connector Block on Host Board

Pin Description:

Pin	Symbol	Name/Description	Ref.
1	V _{EET}	Transmitter Ground (Common with Receiver Ground)	1
2	T _{FAULT}	Transmitter Fault. Low normal operation, High Fault indication	
3	T _{DIS}	Transmitter Disable. Laser output disabled on high or open.	2
4	MOD DEF(2)	Module Definition 2. Data line for Serial ID.	3
5	MOD DEF(1)	Module Definition 1. Clock line for Serial ID.	3
6	MOD DEF(0)	Module Definition 0. Grounded within the module.	3
7	Rate Select	No connection required	
8	LOS	Loss of Signal indication. Logic 0 indicates normal operation.	4
9	V _{EER}		
10	V _{EER}	Receiver Ground (Common with Transmitter Ground)	1
11	V _{EER}	Receiver Ground (Common with Transmitter Ground)	1
12	RD-	Receiver Inverted DATA out. AC Coupled	
13	RD+	Receiver Non-inverted DATA out. AC Coupled	
14	V_{EER}	Receiver Ground (Common with Transmitter Ground)	1
15	V _{CCR}	Receiver Power Supply	
16	V _{cct}	Transmitter Power Supply	
17	V _{EET} Transmitter Ground (Common with Receiver Ground)		1
18	TD+		
19	TD-	Transmitter Inverted DATA in. AC Coupled.	
20	V _{EET}	Transmitter Ground (Common with Receiver Ground)	1

Notes:

- 1. Circuit ground is internally isolated from chassis ground.
- 2. Laser output disabled on TDIS >2.0V or open, enabled on TDIS <0.8V.
- 3. Should be pulled up with 4.7k 10kohms on host board to a voltage between 2.0V and 3.6V. MOD_DEF(0) pulls line low to indicate module is plugged in.
- 4. LOS is open collector output. Should be pulled up with 4.7k 10kohms on host board to a voltage between 2.0V and 3.6V. Logic 0 indicates normal operation; logic 1 indicates loss of signal.

Serial ID Memory Contents:

Data Address	Length (Byte)	Name of Length	Description and Contents
Base ID Fie	lds		
0	1	Identifier	Type of Serial transceiver (03h=SFP)
1	1	Reserved	Extended identifier of type serial transceiver (04h)
2	1	Connector	Code of optical connector type (07=LC)
3-10	8	Transceiver	Gigabit Ethernet 1000Base-SX & Fiber Channel
11	1	Encoding	8B10B (01h)
12	1	BR,Nominal	Nominal baud rate, unit of 100Mbps
13-14	2	Reserved	(0000h)
15	1	Length(9um)	Link length supported for 9/125um fiber, units of 100m
16	1	Length(50um)	Link length supported for 50/125um fiber, units of 10m
17	1	Length(62.5um)	Link length supported for 62.5/125um fiber, units of 10m
18	1	Length(Copper)	Link length supported for copper, units of meters
19	1	Reserved	
20-35	16	Vendor Name	SFP vendor name: PeakOptical®
36	1	Reserved	
37-39	3	Vendor OUI	SFP transceiver vendor OUI ID
40-55	16	Vendor PN	Part Number: "PCSFP-xxxxxx" (ASCII)
56-59	4	Vendor rev	Revision level for part number
60-62	3	Reserved	
63	1	CCID	Least significant byte of sum of data in address 0-62
Extended I	D Fields		1
64-65	2	Option	Indicates which optical SFP signals are implemented
			(001Ah = LOS, TX_FAULT, TX_DISABLE all supported)
66	1	BR, max	Upper bit rate margin, units of %
67	1	BR, min	Lower bit rate margin, units of %

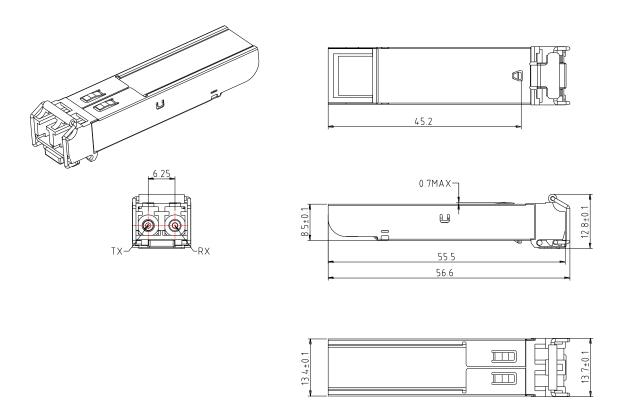
96-127	32	Readable	PeakOptical® specific date, read only
Vendor Spe	cific ID Field	ds	
95	1	CCEX	Check code for the extended ID Fields (addresses 64 to 94)
92-94	3	Reserved	
84-91	8	Date code	PeakOptical®'s Manufacturing date code
68-83	16	Vendor SN	Serial number (ASCII)

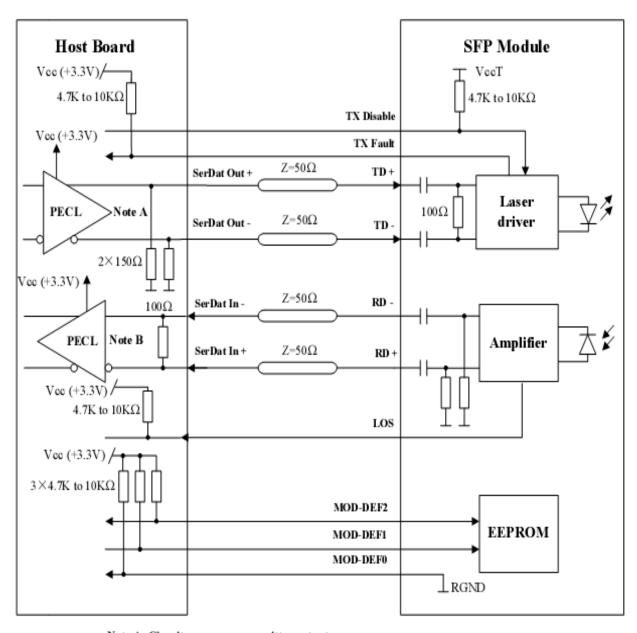
Serial ID Memory Contents: (A2H)

Address	# Bytes	Name	Description
00-01	2	Temp High Alarm	MSB at low address
02-03	2	Temp Low Alarm	MSB at low address
04-05	2	Temp High Warning	MSB at low address
06-07	2	Temp Low Warning	MSB at low address
08-09	2	Voltage High Alarm	MSB at low address
10-11	2	Voltage Low Alarm	MSB at low address
12-13	2	Voltage High Warning	MSB at low address
14-15	2	Voltage Low Warning	MSB at low address
16-17	2	Bias High Alarm MSB at low address	
18-19	2	Bias Low Alarm	MSB at low address
20-21	2	Bias High Warning	MSB at low address
22-23	2	Bias Low Warning MSB at low address	
24-25	2	TX Power High Alarm MSB at low address	
26-27	2	TX Power Low Alarm	MSB at low address
28-29	2	TX Power High Warning	MSB at low address
30-31	2	TX Power Low Warning	MSB at low address
32-33	2	RX Power High Alarm MSB at low address	
34-35	2	RX Power Low Alarm MSB at low address	
36-37	2	RX Power High Warning MSB at low address	
38-39	2	RX Power Low Warning MSB at low address	
40-55	16	Reserved	Reserved for future monitored quantities

Address	# Bytes	Name	Description
56-59	4	Rx_PWR(4)	Single precision floating point calibration data - Rx optical
			power. Bit 7 of byte 56 is MSB. Bit 0 of byte 59 is LSB.
60-63	4	Rx_PWR(3)	Single precision floating point calibration data - Rx optical
00-03	4		power. Bit 7 of byte 60 is MSB. Bit 0 of byte 63 is LSB.
64-67	4	Rx_PWR(2)	Single precision floating point calibration data, Rx optical
04-07			power. Bit 7 of byte 64 is MSB, bit 0 of byte 67 is LSB.
68-71	4	Rx_PWR(1)	Single precision floating point calibration data, Rx optical
00-71	4		power. Bit 7 of byte 68 is MSB, bit 0 of byte 71 is LSB.
72-75	4	Rx_PWR(0)	Single precision floating point calibration data, Rx optical
/2-/5	4		power. Bit 7 of byte 72 is MSB, bit 0 of byte 75 is LSB.
76 77	2	Tx_I(Slope)	Fixed decimal (unsigned) calibration data, laser bias current.
76-77			Bit 7 of byte 76 is MSB, bit 0 of byte 77 is LSB.
78-79	2	Tx_I(Offset)	Fixed decimal (signed two's complement) calibration data,
76-79			laser bias current. Bit 7 of byte 78 is MSB, bit 0 of byte 79 is LSB
80-81	2	Tx_PWR(Slope)	Fixed decimal (unsigned) calibration data, transmittercoupled output power. Bit 7 of byte 80 is MSB, bit 0 of byte81 is LSB.
82-83	2	Tx_PWR(Offset)	Fixed decimal (signed two's complement) calibration data, transmitter coupled output power. Bit 7 of byte 82 is MSB, bit 0 of byte 83 is LSB.
84-85	2	2 T(Slope)	Fixed decimal (unsigned) calibration data, internal module
01 03			temperature. Bit 7 of byte 84 is MSB, bit 0 of byte 85 is LSB.
86-87	2	T(Offset)	Fixed decimal (signed two's complement) calibration data, internal module temperature. Bit 7 of byte 86 is MSB, bit 0 of byte 87 is LSB.
88-89	2	V(Slope)	Fixed decimal (unsigned) calibration data, internal module supply voltage. Bit 7 of byte 88 is MSB, bit 0 of byte 89 is LSB.
90-91	2	V(Offset)	Fixed decimal (signed two's complement) calibration data, internal module supply voltage. Bit 7 of byte 90 is MSB. Bit 0 of byte 91 is LSB.
92-95	4	Reserved	Reserved

Byte	Bit	Name	Description		
Conve	Converted analog values. Calibrated 16 bit data				
96	All	Temperature MSB	Internally measured module temperature.		
97	All	Temperature LSB			
98	All	Vcc MSB	Internally measured supply voltage in transceiver.		
99	All	Vcc LSB			
100	All	TX Bias MSB	Internally measured TX Bias Current.		
101	All	TX Bias LSB			
102	All	TX Power MSB	Measured TX output power.		
103	All	TX Power LSB			
104	All	RX Power MSB	Measured RX input power.		
105	All	RX Power LSB			
106	All	Reserved MSB	Reserved for 1st future definition of digitized analog input		
107	All	Reserved LSB	Reserved for 1st future definition of digitized analog input		
108	All	Reserved MSB Reserved for 2nd future definition of digitized analog input			
109	All	Reserved LSB	Reserved for 2nd future definition of digitized analog input		
			Optional Status/Control Bits		
110	7	TX Disable State	Digital state of the TX Disable Input Pin. Not supported.		
110	6	Soft TX Disable	Read/write bit that allows software disable of laser.		
			Not supported.		
110	5	Reserved			
110	4	RX Rate Select State	Digital state of the SFP RX Rate Select Input Pin.		
			Not supported.		
110	3	Soft RX Rate Select	Read/write bit that allows software RX rate select.		
			Not supported.		
110	2	TX Fault Digital state of the TX Fault Output Pin.			
110	1	LOS	Digital state of the LOS Output Pin.		
110	0	Data Ready	Indicates transceiver has achieved power up and data is ready		
111	7-0	Reserved	Reserved.		


Byte	Bit	Name	Description	
Rese	rved	Optional Alarm and Warr	ning Flag Bits	
112	7	Temp High Alarm	Set when internal temperature exceeds high alarm level.	
112	6	Temp Low Alarm	Set when internal temperature is below low alarm level.	
112	5	Vcc High Alarm	Set when internal supply voltage exceeds high alarm level.	
112	4	Vcc Low Alarm	Set when internal supply voltage is below low alarm level.	
112	3	TX Bias High Alarm	Set when TX Bias current exceeds high alarm level.	
112	2	TX Bias Low Alarm	Set when TX Bias current is below low alarm level.	
112	1	TX Power High Alarm	Set when TX output power exceeds high alarm level.	
112	0	TX Power Low Alarm	Set when TX output power is below low alarm level.	
113	7	RX Power High Alarm	Set when Received Power exceeds high alarm level.	
113	6	RX Power Low Alarm	Set when Received Power is below low alarm level.	
113	5	Reserved Alarm		
113	4	Reserved Alarm		
113	3	Reserved Alarm		
113	2	Reserved Alarm		
113	1	Reserved Alarm		
113	0	Reserved Alarm		
114	All	Reserved		
115	All	Reserved		
116	7	Temp High Warning	Set when internal temperature exceeds high warning level.	
116	6	Temp Low Warning	Set when internal temperature is below low warning level.	
116	5	Vcc High Warning	Set when internal supply voltage exceeds high warning level.	
116	4	Vcc Low Warning	Set when internal supply voltage is below low warning level.	
116	3	TX Bias High Warning	Set when TX Bias current exceeds high warning level.	
116	2	TX Bias Low Warning	Set when TX Bias current is below low warning level.	
116	1	TX Power High Warning	Set when TX output power exceeds high warning level.	
116	0	TX Power Low Warning	Set when TX output power is below low warning level.	
117	7	RX Power High Warning	Set when Received Power exceeds high warning level.	
117	6	RX Power Low Warning	Set when Received Power is below low warning level.	


117	5	Reserved Warning	
117	4	Reserved Warning	
117	3	Reserved Warning	
117	2	Reserved Warning	
117	1	Reserved Warning	
117	0	Reserved Warning	
118	All	Reserved	
119	All	Reserved	

Byte	# Byte	Name	Description
120-127	8	Vendor Specific	00h.
128-255	128		Writable Memory

Mechanical Dimensions:

Recommended Circuit:

Note A: Circuit assumes open emitter output

Note B: Circuit assumes high impedance internal bias @Vcc-1.3V